

PLATE 1 Rotating colors in this mode-lO display of
Program 7 gives the illusion of motion.

PLATE 2 Delicate shading in this mode-9 display of
Program 8 creates a three-dimensional image.

PLATE 3 An entire spectrum of colors can be dis
played simultaneously in the mode-ll Program 9.

UNDERSTANDING
ATARI

GRAPHICS
by Michael Boom

AN ALFRED HANDY GUIDE

Computer Series Editor:
George Ledin Jr.

List of Programs . 3
List of Plates and Figures 4
1. Introduction . 5
2. Basic Concepts and Terms 7

Atari Display Modes 7
Pixels .. 8
Screen Address .. 9
Pixel Loading . 10

Character Sets 11
Color Registers. .. 11

The Cursor 13
3. Graphics Commands 14

Formatting Commands 14
Graphics 14
Setcolor . 17
Color 17

Input/Output . 18
Plot 18
Drawto 18
Position 19
Print 19
Using Print in Text Modes 20
U sing Print in Graphics Modes 22
Locate 22
Put/Get 23
XIO 25

Command Summary 27
4. The GTIA Chip and Graphics

Modes 9,10, and 11 28
5. Tips and Tricks 34
Appendix A: Display Mode Information 36

Text Modes 36
Graphics Modes 38

Appendix B: ATASCII Code Chart 41

~ ALFRED PUBLISHING CO., INC.
L.J ~ SHERMAN OAKS, CA 91403

This Handy Guide is not a publication of Atari and should
not be used in lieu of the instruction manuals that accompany
their products. All information regarding Atari graphics may
not be accurate or completely up to date.

Editorial Supervision: Joseph Cellini

Cover Design: Paula Bingham Goldstein

Production Management: Michael Bass & Associates

Copyright © 1982 by Alfred Publishing Co. ,Inc.
Printed in the United States of America.
All rights reserved. No part of this book shall be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information or retrieval system without written permission of
the publisher.

Alfred Publishing Co. ,Inc.
P .O. Box 5964
15335 Morrision Street
Sherman Oaks, CA 91413

Library of Congress Cataloging in Publication Data

Boom, Michael.
Understanding Atari graphics.

(An Alfred handy guide)
1. Atari computer-Programming. 2. Computer
graphics .

I. Title .
QA76 .8.A82B661982 001.64'43 82- 18463
ISBN 0-88284-224-2

LIST OF PROGRAMS

Program 1
Program 2
Program 3
Program 4
Program 5
Program 6

Program 7
Program 8
Program 9

Chapter 2, p. 8
Chapter 3, p. 16
Chapter 3, p. 18
Chapter 3, p. 24
Chapter 3, p. 26
Chapter 4, p. 28
Chapter 4, p. 31
Chapter 4, p. 32
Chapter 4, p. 33

LIST OF PLATES AND FIGURES

Plate 1. Mode-l0 display of
Program 7. Inside front cover
Plate 2. Mode-9 display of
Program 8. Inside front cover
Plate 3. Mode-11 display of
Program 9. Inside front cover
Plate 4. Chart of available
hues using Atari SETCOLOR
command. Inside back cover

Figure 1. Atari 400 computer
system. Chapter 1, p. 5
Figure 2. Atari 800 computer
system. Chapter 1, p. 5
Figure 3. Different forms of
computer output. Chapter 2, p. 7
Figure 4. Animal drawn with
pixels. Chapter 2, p. 7
Figures 5 A & B. Low and
high resolution in modes 3
and 7. Chapter 2, p. 9
Figure 6. Pixel at coordi-
nates 12,4. Chapter 2, p. 10
Figure 7. Character set for
READY prompt. Chapter 2, p. 11
Figure 8. Color register
default colors. Chapter 2, p. 12
Figure 9. Text window and
graphics window. Chapter 3, p. 15
Figure 10. Color register
chart. Chapter 3, p. 18
Figures 11 A & B. Program
4 in mode 3 and mode O. Chapter 3, p. 25
Figure 12. GTIA and mode 8
pixels. Chapter 4, p. 28
Figure 13. Chart of mode 10
pixel value-color register
equivalencies. Chapter 4, p. 31

1. INTRODUCTION

The Atari personal computer is perhaps the most
powerful video graphics computer available today for
under $2000. Its designers have given it capabilities
far beyond those of other personal computers in the
same price bracket. It can outperform many compu
ters that are much more expensive.

These graphics capabilities offer the opportunity
to use good video displays with your programs. Good
graphics can dress up ordinary business programs,

FIGURE 1. Atari 400 computer system.

FIGURE 2. Atari 800 computer system.

5

make educational programs more enticing, and make
or break a game program. A few graphics-display
additions will communicate ideas to a program user
much more quickly and conveniently than a strictly
textual presentation will.

This Handy Guide has been written to teach
beginning and intermediate programmers how to use
Atari BASIC graphics. You will need to know Atari
BASIC, the language most often used on the Atari. It
will also be convenient to have the Atari BASIC
Reference Manual at hand as a reference, although
this is not absolutely necessary. To learn from this
Handy Guide effectively, you should have access to an
Atari 400 or Atari 800 computer. While it is possible
to learn the graphics commands without actually
trying them on a computer, entering the sample pro
grams and seeing the results on the TV screen makes
it easy to understand just how the commands work.

The material following this introduction is
arranged to take you through Atari BASIC graphics
programming in a logical and thorough manner. We
first discuss basic terms and concepts important to
graphics programming. Then we examine each of the
Atari BASIC commands used for generating video
graphics:

• GRAPHICS
• SETCOLOR
• COLOR
• PRINT
• PLOT
• DRAWTO
• POSITION
• LOCATE
• PUT
• GET
• XIO

Following this is a section on new graphics capabili
ties available on Atari computers equipped with a
GTIA chip. The final section presents some ways to
make graphics programming easier and more effec
tive. In the appendices, there are charts for the dis
play modes and the ATASCII code. Plate 4 on the
inside back cover is a color table showing available
hues using the Atari SETCOLOR command.

6

2. BASIC CONCEPTS AND TERMS

Your computer usually presents information to
you through your television screen. It can also pass
information through a printer, the sounds from your
television speaker, or even an attached voice synthe
sizer (see Figure 3). The main advantages of video
presentation are that it is very fast, relatively inex
pensive, and presents large amounts of information
at one time.

Voice
Synthesizer

Computer Printer

FIGURE 3. Different forms of computer informa
tion systems output.

ATARI DISPLAY MODES

With the Atari, video information can be pre
sented in many different ways. You are probably
most familiar with a textual presentation, in which
the computer prints words in light blue on a dark blue
background. Some of the programs or games you own
may present information graphically, with multi
colored pictures or charts. The Atari has different
methods of video presentation, each of which is
known as a display mode. In the Atari BASIC lan
guage there are 9 modes available, numbered 0

FIGURE 4. Animal drawn with pixels.

7

through 8. (Newer Atari computers may have 12
modes available, numbered 0 through 11. Modes 9
through 11 will be covered in Chapter 4 on GTIA
modes.) Three of these modes are text modes (0 to 2),
which present information in characters-e.g.,
numbers, letters, punctuation, symbols. (Mode 0 is
the normal (or default) mode usually seen on your
display.) The other six modes are graphics modes,
which present information in colored blocks known as
pixels (short for "picture elements"), as shown in
Figure 4.

To see the display modes available, enter and
run the following program:

PROGRAM 1

10 GRAPHI CS 0
28 POSITION 12,12
38 PRINT "THIS IS MODE 13"
48 GOSU8 1888
50 GRAPHICS 1+16
68 POSITION 3,12
70 PRINT 116;" th i s .!.2 t-10DE I"
80 GOSU8 181313
90 GRAPHICS 2+16
10(1 POSITION 3,6
110 PRINT 116;"this is MODE 2"
128 GOSU8 10(18
208 FOR K = 3 TO 8
210 GRAPH I CS t<
220 COLOR 1
23(1 PLOT 113,5: DRANTO 18,15: DRANTO
30,15: DRAIAJTO 1(t, 5
240 PRINT "THIS IS MODE ";t<
250 GOSU8 28 (1 (1

2613 NEXT I<
2713 GRAPHICS 0
28£1 END
188(1 FOR I = 1 TO 18£18: NEXT I: RETURN
28£113 GOSU8 3efH.l
2£118 IF INT (K/ 2)=1</ 2 THEN 2838
21320 SETCOLOR 0,12,10: GOSU8 30£10
2838 SETCOLOR 0,9,4: GOSU8 3(1(10
21348 SETCOLOR 8,8,(1: GOSUB 38(18
2(158 RETURN
3888 FOR I = 1 TO 580: NEXT I: RETURN

Be sure to use inverse letters (indicated here
by an underline) and lowercase letters in statements
70 and 110. (This creates letters of different colors, as
we will discuss later.)

You will notice differences and similarities in
the modes. In the text modes, the characters differ in
size, and modes 1 and 2 have colors. The background
changes from blue to black. In the graphics modes,
the figure shown on the screen seems to shrink as the
mode number gets larger, and some modes have more
colors available than others do. There are many other
differences and similarities which we will discuss
later. For now, let's examine the shrinking figure you
see in the graphics modes when you run Program 1.

PIXELS

The figure drawn on the screen is a simple tri
angle, and the pixels that make it up can be seen
clearly (Figure 5A). As the mode number increases

8

This is Mode 3

FIGURE 5 A & B. Low and high resolution In

modes 3 and 7.

the figure gets smaller, because the size of the indi
vidual pixels shrinks (Figure 5B). The jagged line
begins to look smoother. This demonstrates an impor
tant concept-resolution, or how accurately and
finely a picture can be drawn. The smaller the pixels
are, the finer the picture becomes; the larger the
pixels, the coarser the picture. Modes using large
pixels are referred to as low-resolution modes. Modes
using small pixels are called high-resolution modes.

The concept of a pixel as a rectangular element
on the screen is an important one and should not be
limited to graphics modes. Therefore, lee's think of a
text pixel as an element in a text mode that can dis
play one character. When you turn your computer on
and it displays READY, you see five pixels filled with
the letters R,E,A,D, and Y. Pixels can be "empty,"
too: an empty pixel is the same color as the back
ground, and so cannot be seen.

SCREEN ADDRESS

When your Atari displays on a TV screen, it
must know what to display for each pixel-a charac
ter, a color, or a space (invisible pixel). How does it do
this? Each mode, whether text or graphic, sets aside a
place in its memory to keep track of each pixel. It
divides the screen into a grid of columns and rows, so

9

that it knows where each pixel is on the screen. The
more rows and columns, the finer the grid and the
higher the resolution. It then assigns consecutive
numbers to each column and row so that by
identifying one column and one row, an individual
pixel can be selected.

For example, let's divide the screen into 20 col
umns and 10 rows (Figure 6), and then number the
columns and rows. The Atari starts from the upper
lefthand corner, as you do when you read. It starts
with a 0 and not a 1, so the first column is column
no. 0, and the first row is row no. 0. The twentieth
column is no. 19, and the tenth row is no. 9. This
system takes a little getting used to, but will become
familiar with use.

o
1
2
3
4
5
6
7
8

o 1 234 5 6 78910111213141516171819

-
FIGURE 6. Pixel at coordinates 12,4.

Each of the squares in the grid is a pixel. Each
pixel has a screen address, which is its column number
followed by its row number. These numbers, called
coordinates, are symbolized by "x,y, " where x is the
column number and y is the row number. They are
always separated by a comma. It is important to
remember that the column number always comes first.

To find a pixel on the grid, take the coordinates
and find where column x intersects row y. In Figure
6, the pixel marked is at coordinates 12,4: the thir
teenth column over, the fifth row down.

Now the computer has a space in its memory for
each pixel coordinate from 0,0 to 19,9 (200 pixels in
all) . How does it know what to display for each pixel?
Very simple: it uses a numerical code.

PIXEL LOADING

At each pixel address in the Atari memory is a
number that tells the Atari what to put into that par
ticular pixel on the screen. In the text modes, each
number refers to a character; in the graphics modes,
each number refers to a color. How does the Atari
know which character or color is assigned to a num
ber? To explain, we will look at two memory tools
used in the Atari-the character set and the color
register.

10

CHARACTER SETS

In the text modes, each figure (character) is
referred to by a number from ° to 255. The code
associating the numbers with the characters is called
ASCII (an acronym for American Standard Code for
Information Interchange) . Atari has added to this
code so that the special graphics characters and
inverse letters on the computer can be represented.
For the entire Atari ASCII code (ATASCII), see
Appendix B on p. 42.

For an example of ATASCII at work, see how
your computer displays the READY prompt that
appears when you turn it on, referring to Figure 7.

The first row at the top of the screen is all empty
pixels. Each one is loaded with the number 32, which
is ATASCII for a space. READY is displayed in the
second row (row 1, remember?). Pixel 0,1 is 32; pixel
1,1 is 32; pixel 2,1 is 82; pixel 3,1 is 69; 4,1 is 65; 5,1 is
68; 6,1 is 89; and the rest are all 32s (spaces). The
Atari interprets these numbers as space-space
R-E-A-D-Y and displays each character in the
appropriate pixel so that you can read READY. It is
not normally necessary for you to know the ATASCII
codes to generate characters in the text modes.
Simply using certain keys or combinations of keys will
work. The Atari will automatically convert your key
strokes to the appropriate ATASCII code numbers
and load those numbers into the pixels. For certain
applications, however, it will be helpful for you to
know what these numbers represent.

COLUMN: o 1 2 3 4 5 6 7 8 9----

ROW: 0 32
32

2

32 32 32 32 32 32 32
32 82 69 65 68 89 32

These Values

Create this Display:

32 32
32 32

FIGURE 7. Character set for READY prompt.

COLOR REGISTERS

In the graphics modes, the Atari interprets each
number in a pixel as a color, not a character. In Atari

11

BASIC, a color is defined by combining a hue and a
luminance. You can see the 16 hues available in Plate
4 (back cover). The luminance is the shade or bright
ness of the hue you would like. Since there are 16
different hues avai lable in 8 different luminances
each, we have 128 different colors to work with.

The Atari does not put numbers from 0 to 127
into pixels and then interpret them as 128 separate
colors. Instead, Atari BASIC uses only 5 colors at a
time (or 9 colors in GTIA mode 10). This saves much
memory, and a llows for much easier use of color
g raphics. This is how the system works: We can
choose the colors we wish to work with, a nd then
store them in color registers numbered from 0 to 4.
Each color register is like a pot of paint. As the com
puter reads numbers from 0 to 4 stored in pixels, it
refers to the color register specified by each number
and then "paints" the pixel with the color contained
in that color register. For example, let's say color
register #0 is assigned orange. All pixels that are
loaded with t his color register will appear orange. If
color register #0 is then changed to blue, then a ll of
those pixels will change to blue. This happens virtually
instantaneously, since the computer "refreshes" the
screen 60 times a second . Color registers make it very
easy to change the color of many pixels at once.

The color registers can be assigned specific
colors using the SETCOLOR command, which we wili
discuss in Chapter 3. Otherwise, the color register
default colors (those which are ass igned automatically
by the computer everytime it is turned on) are as
follows:

Color Register #

o
1
2
3
4

Default Color

orange
green
blue
red

black

FIGURE 8. Color register default co lors. (Excep
tions to this are modes 0 a nd 8, which we will explain
later.)

It is worth noting that color register #4 is used
only for background or border color, and color regis
ter #3 is only available in text modes 1 and 2. Thus, in
the graphics modes you have a maximum of 4 colors
availabl e at anyone time: 3 graphics and one
background. (Modes 4 and 6 are two-color, and mode
8 is one-color. The GTIA modes 9, 10, and 11 are
exceptions to this, and wi ll be discussed in Chapter 4.)

Going back to the text modes, if each pixel con
tains a number that represents a character, how can
you also select a color for each character? In mode 0,
there is no problem: a ll 256 characters have the same
color register. In modes 1 and 2, characters can be
displayed in one of four colors. Therefore, in these
modes the Atari limits us to 64 different character s
(capital letters, numerals, punctuation marks, and
other symbols such as dollar signs and asterisks) and
assigns a different color regi ster to each group. Each
of these groups is then assigned 64 numbers from a

12

range of 0 to 255, replacing the regular ATASCII
character assignments. Now when the Atari inter
prets a number from 0 to 255 in a pixel, it interprets it
as one of the 64 characters in one of 4 colors set by
the color registers 0 to 3. For example, with the
default colors for the color registers, a 65 loaded into
a pixel will yield an orange" A," a 97 will give a green
"A," 193 wi ll be blue, and 225 will be red. For a
summary of these characters, their colors, and code
assignments, refer to Append ices A and B.

THE CURSOR

Now we know how the Atari keeps track of indi
vidual pixels and screen display, but how do we go
about changing the display so that it will show the
text or graphics we want? We simply change the
numbers in various pixels so that the appropriate
character or color is shown. The most convenient way
to do this is through a display device called a
cursor-the small white rectangle that shows where
you are typing on the screen in mode o. You may find
it convenient to think of the cursor as a door to any
pixel on which it happens to be resting. We can
merely open the pixel and look at the number inside,
or we can reach inside and change the number to the
one we want. When we type in characters at the
keyboard, what we are actually doing is sending a
number from the keyboard to the cursor, which
inserts that number into the pixel and then moves on
to the next one.

In mode 0 we can see the cursor as the inverse of
the character it is resting on. In the other modes the
cursor is invisible, but it is sti ll there, moving from
pixel to pixel at our command, looking at and chang
ing their contents. In the next section we will learn
how to control the position and function of the cursor.

We can look at the display screen, then, as agrid
of pixels. Each pixel is filled with a number, which the
Atari, after referring to a color register or a charac
ter set, interprets as a color or a character. We can
change the display by changing the numerical con
tents of the pixels, and we use the cursor as a means
of changing or looking at individual pixels.

13

3. GRAPHICS COMMANDS

To aid in our examination of the graphics com
mands used in Atari BASIC, we will divide these com
mands into two types: formatting commands, which
prepare display conditions for later commands, and
input/output commands, which actually change the
data in the display pixels-.

Formatting commands are not used for changing
pixel data. They prepare display conditions for input/
output commands, acting in a manner similar to an
artist preparing to paint a picture. What medium will
the painter employ: oil, watercolor, pencil, ink?
Should the picture be put down on canvas, rough
paper, silk, or some other background? What colors,
if any, should be used? These questions must be
answered before the painter can begin painting. In a
similar manner, when we wish to select our display
conditions, or format, we use formatting commands
to tell the computer what colors, what pixel size, and
what mode to use.

Input/output commands correspond to the brush
strokes (or pen or pencil strokes) of the artist. Which
of the colors available should be used? Shall I paint a
line? In what direction will the line go? Should this
area be filled in? We command the computer to per
form similar functions using input/output commands
- so named because they take numbers in and out of
pixels to change the way they display.

FORMATTING COMMANDS

GRAPHICS

We use this command to select a display
mode. Its format is GRAPHICS m, where m is the
mode number we wish to select. In an earlier program,
we looked at the nine different modes available. Now
we wi ll assign the numbers used in Atari BASIC and
look at their general characteristics.

MODE 0
Mode 0 is the default mode. When we first turn

on the computer, it is automatically in mode O. This
mode is a text mode, and can print 24 lines of 40
characters each. Its default colors are blue
blackground with white letters (actually, a very light
blue).

MODE 1
This is also a text mode. If you enter the com

mand GRAPHICS 1 you will see that this mode has a
split screen. There is a small strip of blue at the
bottom, which prints characters in the same way that
mode 0 does (see Figure 9). This is called a text
window and is put there so that you can conveniently
communicate with the computer using the keyboard.
The rest of the screen is used for display. This mode-O
text-window is present in all modes from 1 to 8.

14

Graphics Window

FIGURE 9. Text window and graphics window.

The black part of the screen is the graphics win
dow. (To get back to mode 0, hit the SYSTEM RESET
button or enter GRAPHICS 0.) This is where we can
print text in mode 1. The characters here are the
same height as mode 0 but are twice as wide. The
graphics window can print 20 lines of 20 characters
each. (It would be 24, but the text window takes up 4
lines.) It can print the characters in 4 different colors.
Its default colors are orange, green, blue, and red
characters, with a black background. (All colors will
vary somewhat, depending on the TV set used.)

MODE 2
This is a text mode. It displays characters that

are twice as wide and twice as high as mode O. It can
print 10 lines of 20 characters each (2 more lines are
blocked by the text window) in 4 different colors. Its
default colors are the same as mode 1. In fact, mode 2
is identical to mode 1 except that the characters are
twice as high.

MODE 3
The first of the graphics modes, mode 3, like

modes 1 and 2 has a text window; but instead of char
acters in the graphics window, it presents graphics
pixels. These pixels are large: there are 20 rows of 40
pixels each (a 20 x 40 display area, or 800 pixels). It is
a low-resolution mode. The pixels can be displayed in
four different colors, including the background color.
The default colors are black background, orange,
green, and blue.

MODE 4
This graphics mode has a text window. The

pixels are smaller than those in mode 3: there are 40
lines of 80 pixels each (3200 pixels altogether). In this
mode there are only two colors for pixel display,

15

including the background color, making it a two-color
mode, as opposed to mode 3, which is a four-color
mode. Its default colors are black background and
orange.

MODE 5
Mode 5 is the same as mode 4, except that it is a

four-color mode. Its default colors are black back
ground, orange, green, and blue.

MODE 6
A graphics mode with a text window, mode 6 has

pixels that are even smaller than those in modes 4 and
5. There are 80 lines of 160 pixels each (12,800 pixels
altogether). Like mode 4, this is a two-color mode. Its
default colors are black background and orange.

MODE 7
Mode 7 is a four-color version of mode 6. Its

default colors are black background, orange, gTeen,
and blue.

MODE 8
This extremely high-resolution graphics mode

has the tiniest pixels available on the Atari. It has a
text window. There are 160 rows of 320 pixels each.
This mode uses only one color displayed in two dif
ferent luminances. Its default colors are blue back
ground and white (really a very light blue).

For easy reference, refer to Appendix A on p. 36
which contains a comparison chart of all Atari text
and graphics modes.

Now that we know the modes, we use the
GRAPHICS command to select the one we wish.
GRAPHICS m, where m is our mode number, will put
the computer into the mode desired. To get back to
default mode 0, either hit SYSTEM RESET or enter
GRAPHICS O. This will clear the screen as well.

If you wish to eliminate the text window from
any mode, simply add 16 to the mode number. For
example, GRAPHICS 18 (2 + 16) gives us mode 2 with
out a text window. E liminating the text window gives
you room for more lines of modes 1 and 2 text and, in
modes 3 through 8, more graphics pixels. One word of
caution, though: as soon as the Atari finishes a pro
gram in these windowless modes, it reverts back to
mode 0 to display the READY prompt. This can hap
pen so quickly that you see only a small flash of the
new mode before mode 0 takes over again . To circum
vent this , you can use an endless loop at the program's
end to keep it displaying the mode. For example:

PROGRAM 2

1£1 GF.:APHI CS 18
2 0 PRINT #6;"F LASH"
3(1 GOTO 30

First try program 2 without line 30; then add
line 30. To escape the loop, hit BREAK or SYSTEM
RESET. Line 30 can also use a FOR/NEXT loop,

16

which will keep the mode 18 display for a set amount
of time, and then return to mode o. Try substituting:

38 FOR I = 1 TO 588: NEXT I

Each time we use the GRAPHICS command, it
clears the screen and restores the default colors. In
fact, using GRAPHICS 0 in a program is an easy way
to wipe the screen clean for later text display. If you
wish to avoid clearing the screen when changing
modes, add 32 to the mode number. Use this with
care, though, because it tends to display garbage
when used with modes 5 through 8, and may not keep
the desired part of the screen when going from high
resolution to low-resolution modes.

SETCOLOR

Earlier we talked about color registers, where
colors were loaded for later reference. Using our
artist analogy, the color registers are equivalent to
the palette used, the colors we have selected. Unlike
the artist, though, we cannot mix our colors. They
must remain separate within their color registers.

We have 5 color registers. They are numbered
o through 4, and are loaded with default colors when
we turn on the computer or hit SYSTEM RESET. If
we wish to put in another color, we type SETCOLOR
r,h,l, where r is the number (from 0 to 4) of the color
register we want to load, h is the hue we want to put
in (0 to 15), and l is the luminance (brightness) of the
color we want (even numbers from 0 to 14). The hue
chart, Plate 4 on the inside back cover, shows you the
16 hues by number. Luminance is determined by the
size of the even number used. The number 0 gives you
the darkest luminance, 14 the lightest.

When we load a new color into a color register,
every pixel affected by that register will immediately
change color. For example, in mode 0, let's change
colors in register no. 2, which controls the back
ground color. Enter:

SETCOLOR 2,4,O

The 2 selects the register, 4 selects pink, and 0 makes
the pink as dark as possible. This should produce quite
a change on your screen! To get back to blue, hit
SYSTEM RESET or enter GRAPHICS o.

Remember that the color registers are already
loaded with default colors, so we only need to use the
SETCOLOR command when we wish to change the
colors.

COLOR

This command tells later input/output commands
what number to load into individual screen pixels. It is
usually used for the graphics modes, in which each
number stored in a pixel calls up a separate color
register. The number 1 in a pixel brings up register
no. o. Number 2 brings up register no. 1, and number
3 brings up register no. 2. To confuse the situation a

17

little more, the number 0 brings up register no. 4. For
clarification, Figure 10 gives a small chart. Register
no . 3 is only used in text modes 1 and 2.

In graphics modes,
this number
in a pixel:

brings up
this
color register:

1

2

3
o

---------------------.-. #0

---------------------.-. #1

---------------------.-. #2

---------------------.-. #4

FIGURE 10. Color register chart.

The form of the COLOR command is: COLOR n,
where n is the number to be placed into the pixel. It is
always used in conjunction with an input/output
command.

INPUT/OUTPUT COMMANDS

PLOT

The PLOT command places the invisible graphics
cursor at one pixel and loads that pixel with the
number given in the last COLOR command. The way
we use it is PLOT x,y, where x is the column number
of the pixel and y is the row number. It is usually used
in graphics modes but can also be used in text modes.
The number loaded in the pixel brings up a color in
graphics modes and a character in text modes. For
example:

PROGRAM 3

10 GF.:APHI CS .-,

'" 213 COLOF.: .-,

'" 313 PLOT 1 (t ~ 5

This program should put a blue square (one pixel)
on the screen, 11 columns over and 6 rows down. The
command COLOR 3 brings up color register #2
(default color is blue), and PLOT 10,5 places this into
the pixel. If you enter:

10 GRAPHI CS 2

and run the program, you should see a green "#" on
the screen 11 columns over and 6 rows down. By
changing to mode 2, the 3 we loaded into the pixel is
now read as the ATASCII character "#" in color
register 1.

DRAWTO

This command draws a line from the last cursor
position to the new pixel address, filling in pixels
along the way with the number given in the last

18

COLOR command. Its format is: DRA WTO x,y,
where x,y is the new pixel address. For example, add
this to program 3 (in mode 3):

40 DRA~"n o 0,0

and run the program. You should see a line of pixels,
from address 10,5 to address 0,0, drawn as straight
as possible.

The cursor has been left on the new pixel address
given in the DRA WTO command.

POSITION

Technically, this is not an input/output com
mand, because it does not change or read numbers
from a pixel. Nonetheless, it is closely tied to the
PRINT, PUT, and GET commands. POSITION x,y
will move the invisible graphics cursor (or the mode °
cursor) to the pixel address given by x,y. It will not
change or read any numbers in pixels along the way
or at the new address.

PRINT

This command is probably very familiar to you,
but it has graphics uses that you may not yet know.
The PRINT command is followed by a string (in quo
tation marks), a variable, or an arithmetic expression.
This command evaluates the expressions, finds cur
rent values for variables, and then sends a sequence
of AT ASCII code numbers to the screen or to an
outside device. These ATASCII code numbers can
then be translated to their appropriate characters.

How do we control where the PRINT statement
sends its ATASCII code? If we use an unmodified
PRINT command, it will automatically send its code
to the screen, where it will display it in mode-O
textual form. In modes 1 through 8, it will display in
the text window. If we use modes 1 through 8 without
a text window, the PRINT statement will break us
out of that mode, return to mode 0, and clear the
screen to display its message.

To send the ATASCII code elsewhere, we follow
the PRINT command with a device number. This num
ber, a number from ° to 7, refers the Atari to an out
side device (e.g., printer, disc drive). For more infor
mation on device numbers, read Chapter 5 in the
Atari BASIC Reference Manual (published in 1980 by
Atari, Inc) . This manual should be included with your
Atari 400 or 800 computer. In this Handy Guide, the
only device number we will be concerned with is no. 6.

Device no. 6 is automatically set to be the
graphics window of the television screen when we
are in modes other than 0. By using the command
PRINT #6; (the # and ; are essential), we cause the
ATASCII code to be sent to the graphics window in
modes 1 through 8. (Later we will see how to use this
modified print statement.)

In mode 0, when we enter:

PRINT "I 'M SENDING ATASC I I COD E TO THE
SCREEN. "

19

the Atari evaluates each character within the
quotation marks and converts it to the appropriate
ATASCII numeral. As it does so, it sends that
numeral to the cursor, which inserts it into the pixel
on which it is resting. The cursor then moves one
address to the right, the next AT ASCII numeral is
sent, it is inserted into the pixel, and so on until the
entire string is displayed.

One important aspect of the PRINT command
is cursor location . As you see, once in operation it
moves the cursor one pixel at a time, left to right.
When it reaches the right edge of the screen, it drops
one row down and returns to the far left of the screen
(just as we do when reading or writing). How does it
know where to start? It starts wherever the cursor is
positioned. Where does it leave the cursor when it is
done? If the last character fo llowing the PRINT com
mand is a ,(comma) and is not enclosed in quotation
marks, the cursor comes to rest at the next column
stop position. (Column-stop positions are preset in the
Atari; they are not the tabs set by the keyboard.) If
the last character is a ;(semicolon) and is not enclosed
in quotation marks, then the cursor rests at the pixel
to the right of the last pixel filled with an ATASCII
numeral. If neither the comma nor the semicolon is
used, the cursor is sent one row down, to the far left
of the screen (the beginning of the next line). For
example:

THIS IS WHERE THE CURSOR RESTS AFTER A
COMMA, []

THIS IS WHERE THE CUR SOR RESTS AFTER A
SEMI COLON; []

THIS IS WHERE THE CURSOR RESTS WITH NO
SEMICOLON OR COMMA
[]

Since the PRINT command starts wherever the
cursor is positioned, we can use the POSITION com
mand to start the PRINT wherever we wish.
Entering:

GRAPHICS 0: POSITION 18,12: PRINT
"CENTER"

should clear the screen and then put CENTER in the
middle of it. If we position the cursor to start the
PRINT where something is already displayed, it will
simply write over it. (Remember that when it loads
each pixel with an ATASCII numeral, it erases what
was previously there.)

USING PRINT IN TEXT MODES

Using the PRINT command in mode 0 is fairly
simple, and you have probably had quite a bit of expe
rience using it that way. However, when we use the

20

PRINT #6; command ir: modes 1 to 8, new graphics
possibilities open up.

As we learned earlier, in modes 1 and 2 we are
limited to 64 characters with 4 colors. These 64
characters are the ones we use most often: capital
letters, numerals, punctuation marks, and other
symbols such as dollar signs and asterisks. They
correspond to ATASCII numbers 32 through 95 (see
Appendix B on p. 41). The characters left out are
small letters, graphics symbols, and all inverse
characters.

When using the PRINT #6; command in text
modes, uppercase letters in the quotes following will
be reproduced on the screen as uppercase letters in
the color controlled by color register a. Lowercase
letters will appear as uppercase letters controlled by
color register 1. Inverse uppercase letters are dis
played as color-register 2 uppercase letters, and
inverse lowercase letters as color-register 3 upper
case letters. More succinctly: when you wish to print
uppercase letters in modes 1 and 2, enter them after
PRINT #6; as:

• Normal for the color of register a
• Lowercase for the color of register 1
• Inverse for the color of register 2
• Inverse lowercase for the color of register 3

The same holds true for numerals and punctua-
tion, but since there are no lowercase numerals and
punctuation, only color registers a and 2 are available
using this method. The graphic symbols and their
inverses are used for registers 1 and 3. Appendix B
correlates all the ATASCII numbers with their mode
a and mode 1 or 2 characters.

It is possible to change our 64-character set dis
played in modes 1 and 2 from numerals, punctuation,
and uppercase letters to lowercase letters and
graphics characters, by entering:

POKE 756,226

One problem with this is that the "space" character is
not included in this character set, so a heart-shaped
graphics symbol will fill the screen where spaces
usually are. To return to the default character set, hit
SYSTEM RESET or use the command:

POKE 756,224

Cursor positioning in these modes using the
PRINT #6; command is controlled in the same way as
is the PRINT command in mode a-with commas,
semicolons, or absence of punctuation. The main dif
ference is that modes 1 and 2 will not scroll the screen
for you. Scrolling takes place in mode a and in the
text windows of other modes when you run out of
room at the bottom of the screen to print. The Atari
then shifts the entire contents of the screen up by one
logical line, leaving room at the bottom for more text.
In modes 1 and 2, the cursor will run off the bottom of
the screen, giving you an error no. 141: cursor out of
range. In these modes, then, you must plan carefully
how many lines you will print.

21

USING PRINT IN GRAPHICS MODES

Up to now, we have used the PRINT #6; com
mand as a way to display text. In modes 3 through 8,
it can be used to color in graphics pixels. Recall that
text modes use numbers from 0 to 255 in each pixel to
call up different characters from the character set.
Four-color graphics modes use a number from 0 to 3
to refer to color registers, and two-color modes use 0
or 1. What happens in four-color modes when the
PRINT #6; command starts loading numbers larger
than 3 into graphics pixels? The Atari simply chops it
down to size. It divides the number by 4 (using integer
division) and puts the remainder into the pixel. For
example, if the cursor tries to load 65 (AT ASCII for
A) into a pixel, it is divided by 4, which gives 16 with a
remainder of 1. The 16 is discarded, and the pixel is
loaded with 1. This corresponds to COLOR 1, and will
call up color register no. O. In two-color modes, the
Atari will divide by 2 and load the remainder, a 0 or a 1.

How do we use this tool? By printing strings of
characters in graphics modes, we can fiJI in rows of
pixels in many different colors without using tedious
COLOR, PLOT, and DRAWTO commands. The char
acter 0 will yield background color, the characters 1,
2, and 3 will yield colors 1, 2, and 3 (calling up regis
ters nos. 0, 1, and 2). By combining POSITION and
PRINT #6; we can print colored rows wherever we
like. Try this:

GRAPHICS 3: POSITION 17,10: PRINT #6;
" 123123"

A three-color bar should appear in the middle of the
screen.

We can prin t several strings in a column that will
combine to create complex patterns and pictures.
Experimentation and imagination will guide you from
here.

LOCATE

The simple command LOCATE is used to position
the cursor at a pixel address and read the contents of
the pixel. It works in all modes. To use it, we enter
LOCATE x,y,variable, where x and y give the pixel
address and the variable sets up a place to store the
contents of the pixel. For example, if we want to look
at the contents of pixel 14,18 we enter:

LOCATE 14,18,P: PRINT P

The Atari then prints out the contents of pixel 14,18-
a number from 0 to 255 in the text modes, 0 to 3 in the
four-color graphics modes, and 0 to 1 in the two-color
modes. The cursor remains on address 14,18.

Although this command is used only to read the
contents of a pixel without changing it, following the
LOCATE command with a PRINT may alter the con
tents of the pixel. Be prepared to reload the pixel.

22

PUT/GET

PUT and GET are two commands that access
individual pixels. The PUT command reads the
number that a particular pixel holds. When we use
these two commands we have to specify a device num
ber, as we did in the modified PRINT statement. For
graphics usage, we again use #6 to specify the
graphics window of the TV screen. Here are the for
mats to use: PUT #6,n, where #6 is the device number
and n is the number to load into the pixel; GET #6,
variable where #6 is the device number and the vari
able (X, A, J, PIX, whatever you wish to use) receives
the number held in the pixel.

Isolated PUT and GET statements work much
the same as PLOT and LOCATE commands.
Entering:

GRAPHICS 3: POSITION 5,10: PUT #6,3

will plot a blue pixel at address 5,10. Entering:

GRAPHICS 3: POSITION 5,10: GET #6,X:
PRINT X

will print a 3, the contents of pixel 5, 10, in the
graphics window.

The important difference between PUT/GET and
PLOT/LOCATE lies in cursor positioning. PLOT and
LOCATE commands need an address for the cursor
each time they are used. The PUT and GET com
mands do not use an address but instead work on
whatever pixel the cursor is positioned on. This is why
we used a POSITION command in the examples
above. Even more important, after a PLOT or
LOCATE command, the cursor remains on the same
pixel. Following a PUT or a GET, the cursor auto
matically moves one pixel to the right. If it is already
at the far righthand edge of the screen, the cursor
drops one row and jumps to the far left, as the PRINT
command does. This is important, because consecu
tive PUT or GET commands can be used to read or
input long rows and large blocks of pixels without
tediously reentering new addresses for each
command.

To see how this works, as well as to demonstrate
other familiar graphics commands and concepts,
enter and run Program 4.

This program will draw lines in mode 3 (Figure
lIA), will then use a loop of GET statements to
gather the display numerals from each pixel in the
graphics window, will print out the results in mode 0
(Figure lIB), and will conclude by returning to mode
3 and reloading the lines using a loop of PUT state
ments. We will use array A with 801 (0 to 800) ele
ments to store the contents of the 800 pixels in mode 3.

23

PROGRAM 4

10 DIt'1 A(813(1)
20 POKE 82,0: POKE 83,39
3(1 GRAPHIC S '"
48 COLOR 1: PLOT 8,0: DRAWTO 19,19
58 COLOR 3 : PLOT 39,13: DRAWTO 213,19
.513 POSITIOt'-J 17,1(1: PRINT 116; "123123"
11313 POSIT! ON (1, (1
11 0 FOR 1=1 TO 81313
12(1 GET 116, X
1313 A(1)=)(
140 NEXT I
21313 GRAPHICS 0
2 1(1 FOR 1=1 TO 81313
2213 PRINT A(I) ;
230 NE)(T I
240 FOR J=1 TO 20013: NEXT J
3130 GRAPHICS 3
3 10 POSITION 0,13
32(1 FOR 1=1 TO 8(113
3313 PUT 116, A(I)
348 NEXT I

Let us analyze this program line by line.

24

• 10-Dimension array A.

• 20-These two POKEs set the margins all
the way to the edge in mode O. (We will
discuss this in Chapter 5.)

• 30-Go to mode 3.

• 40-Draw an orange line.

• 50-Draw a blue line.

• 60-Draw a multicolored line.

• 100-Put the cursor in the upper lefthand
corner to begin reading the pixels.

• 110-Set up an 800-step loop.

• 120-Read the current pixel, pop the value
into X, move the cursor to the next pixel.

• 130-Load the value of X into an ordered ele-
ment of array A.

• 140-Complete the loop.

• 200-Go back to text mode O.

• 210-Set up an 800-step loop.

• 220-Print out each element of the array A in
consecutive order.

• 230-Complete the loop.

• 240-Kill some time so the viewer can look at
the display.

• 300-Return to mode 3.

• 310-Put the cursor in the upper lefthand
corner to begin loading the pixels.

• 320-Set up an 800-step loop.

• 330-Fill each pixel.

• 340-Complete the loop.

Mode 3 (Graphics mode)

/Orange

Orange Blue

\JJ \,
Graphics Window

Mode 0 (Text mode)

IOOOOpOOUooooooooonooooooooonoooooooooo~
O l OOOllOOOOOOOOOOOOOOOOOOU IIOOIIOOOIJOOOUII30
00 l OOODOOOOUOOOOOUOIIOOOOOOOOOOOOOOU00300
OOOlonooouoooooonOOOOOOOOOOOOOOOOOU03UOO
OOOOlll000000000000000000000000000 00 3000 0
00000 I OOOOUOOOOOOOOOOOOOOOOIIOOOOIIO~jOOOOO
OOOOOOIOllooonooooooooooonnooooooo~oooooo
ooooonnlnnuoonouooonooooonOUoonQ~ooonooo
00000000100000000000U000000000030UOOOUOO
000001l000100UOOOOOOII00u00000003000000000
o 0 0 0 0 0 0 0 0 I) 1 0 (I 0 0 0 0 1 ~ :\ 1 ~ :j U 0 0 0 II 0 :j 0 0 0 0 0 II U 0 0 0
OOOOOOIlOOOO l oooonOOOOOOIlOO(103000 1l 00onooo
o 0 () n 0 0 0 0 0 0 0 n \ 0 0 0 u 0 0 U II 0 0 I) 0 n (\ :\ 0 0 0 Q 0 0 0 0 0 (\ 0 0
OllllooonOOOOOO I OOOOlillOOOO OQaOOQOOOO OOO OOO
o 0 0 0 0 IJ II 0 0 () 0 0 0 11 1 " U 0 0 II II 0 IJ IJ 0 :j 0 () () 0 n II 0 0 0 0 0 n 0 ()
o 0 11 (I 0 I) 0 0 0 II 0 0 " 0 0 1 n I) n 0 IJ 0 0 0 :j 0 0 () U 0 0 0 0 I) 11 0 () () 0 0
o II (J II 0 II 0 0 0 II 0 0 tI il 0 I) 1 0 0 0 () II Q :1 II f) 0 n 0 U 0 0 0 " n 0 1111 0 0
o (I il () Il I) 0 0 II II () I) I) II II (I 0 1 II II II II :l f) II 0 0 " 0 0 0 0 0 II 0 0 0 (I 0 0
OOIlOO()()OOIlOOIlOllOllil l tl030(lOI)OIlIlOOOOIJOO(lOOO
o 0 () 0 0 0 0 0 tl Illl 0 011 0 () 0 () 0 1 :\ Il 0 tl tl 0 " il 0 0 II 0 11 () 0 0 (I 0 0 0

FIGURE 11 A & B. Program 4 In mode 3 and
mode O.

Some things to notice: in lines 40 and 50, we used the
PLOT and DRA WTO method to draw our lines, while
in line 60 we used the PRINT method. Whenever we
read or load individual pixels, especially when there
are 800 of them, it takes time. This is why it takes
more time to display in mode 3 using the loop in lines
300 to 340 than it does using lines 40 through 60,
which can ignore blank pixels. The display in mode 0
(lines 200 to 240) should give a very clear idea of how
the pixels are loaded in mode 3. The pixels occupy the
same locations in these two modes, so the patterns
show up in both.

Obviously, saving and loading graphics windows
is only one use for PUT and GET commands. You will
discover many more.

XIO

The XIO command is a tricky and potentially
confusing command, but it can save us a lot of pro
gramming trouble if we learn to use it. Its purpose in
graphics is to fill in areas of the screen with one color
or character quickly and easily.

25

To work effectively, XIO should be used with
several other commands. It is preceded by a POKE
statement that tells XIO what number to use to fill in
the screen and a POSITION statement that tells it
how far along the screen to go.

For graphics applications, the program format is:

POKE 765,n
POSITION x,>'
X IO 18,#6,0,0,"5:"

In the POKE command, n is the number you wish to
use to fill the screen-area pixels, and x and yare the
XIO ending boundary address. The XIO command
format has no variables and is used just as you see it
always followed by 18,#6,0,0,"S:"-for the "fill"
application.

Now for the specifics of XIO behavior. XIO does
several things at once. It draws a line from the last
pixel plotted to the new cursor position given with the
POSITION command. It draws this line using the
color of the last plotted pixel; that is, if that pixel was
filled with color 1, it will plot all points of the new line
in color 1. For each pixel it plots (up or down), it fills
all background pixels (those loaded with 0) to the
right with the color number given in the previous
POKE 765, x statement. It does this until it hits a
non-zero pixel. As soon as this happens, it stops filling
and plots the next point of the boundary line being
drawn. If it fills all the way to the right without
hitting a non-zero pixel, it wraps around to the far left
side of the screen (on the same line) and continues
filling until it reaches a non-zero pixel. You can see
the wrap-around effect in program 5, on the lower
screen. When XIO hits the cursor position given pre
viously, it plots the end of the boundary line there and
fills to the right. It leaves the cursor at the last pixel
of the fill line.

To see just how the XIO command works, let's
enter and analyze this program:

PROGRAM 5

1 (1 GF:APH I CS 7
26 COL OF: 1
30 PLOT 110. 60
40 DRANTO 130, 40
50 DRANTO 110, 29
613 DRANTO 50,20
70 POKE 7,~5. 3
80 POSITION 40,70
',;0£1 >< 10 18~U.~. ~(1~(1~"S:u

If you run this program, you will see three sides
of a figure drawn in orange (the two right sides, and
the top side). As the left side is drawn, also in orange,
the figure is filled from the left to the right side with
blue. As soon as the right hand boundary of the figure
is passed going down, the blue filler covers the entire
width of the screen, wrapping around to fill in even to
the far left portion of the left side. All this was
achieved as follows:

• 10-Enter mode 7.

26

• 20-Select color 1 (color register 0) for use
(orange).

• 30-Plot a point at the lower right side of the
graphics window.

• 40-Draw a line from the previous point up
and to the right.

• 50-Draw a line from the end of the last one
up and to the left.

• 60-Draw a line from the last one straight to
the left.

• 70-Tell the XIO command to use color 3
(color register 2) to fill in the figure (blue).

• 80-Move the cursor (without drawing) to the
lower left side of the screen.

• 90-Draw a line in orange (color 1) from the
last plotted point to the new cursor position.
As each point is plotted, fill in every back
ground pixel to the right with blue (color 3)
until a non-background pixel is reached.

A couple of points to consider: XIO will only fill
in areas of background color (zero pixels). It will not
cover over non-background colors. Beware: if for
some strange reason you are drawing and filling with
color 0, when XIO fills it may not encounter a non
zero pixel and will enter an endless loop!

COMMAND SUMMARY

We have now examined the Atari BASIC
graphics commands and their functions. The format
ting commands allow us to prepare for later pixel
changes on the screen:

• GRAPHICS determines the mode we use
• SETCOLOR loads a color register with the

color we want
• COLOR determines the color to be used for

the drawing commands that follow it.

The input/output commands let us display colors
and characters on the screen:

• PLOT and DRA WTO fill specified pixels with
a previously selected color or character

• PRINT fills successive pixels with a string of
characters or colors

• POSITION moves the cursor around the
screen without changing anything

• LOCATE examines the contents of any indi
vidually addressed pixel

• PUT successively loads pixels with colors or
characters

• GET successively examines the contents of
pixels

• XIO fills in enclosed figures with a color or
characters .

Using these commands in a BASIC program can
provide us with effective graphics displays.

27

4. THE GTIA CHIP AND
GRAPHICS MODES 9, 10, AND 11

Three new graphics modes are accessible through
Atari BASIC on most Atari computers sold after Jan
uary of 1982. These computers contain a GTIA video
display chip that replaces the less versatile CTIA chip
used in earlier Ataris. The video-display chip is the
part of the Atari computer system that displays data
on the screen. The way it displays depends on which
graphics mode has been seiected.

Since the Atari computer system was designed
to use the GTIA chip, it is very easy to update any
computer with an older CTIA chip. The GTIA is avail
able at most Atari service centers, where it can be
installed. If you are familiar with the innards of the
Atari, you can install it yourself in about half an hour.
If you decide to do it yourself, make sure you replace
the proper chip and position the GTIA chip in the
right way: otherwise you will damage the GTIA and
possibly your computer.

One immediate benefit of the GTIA chip is
enhanced color on the TV screen. The most important
advantage of the GTIA over the CTIA is that three
new graphics modes are added to Atari BASIC: mode
9, which has one hue and sixteen luminances; mode
10, which has nine separate colors; and mode 11,
which has one luminance and sixteen hues.

These new modes (called GTIA modes) have
several features in common. One is the pixel size. It is
very small and allows very high-resolution graphics.
Each pixel is the height of a mode 8 pixel but is four
times as wide (Figure 12). It looks like a tiny rectangle
rather than the square pixels in modes 3 through 8.
There are 80 columns and 192 rows in modes 9-11.

D
GT1A pixel Mode 8 pixel

FIGURE 12. GTIA and mode 8 pixels.

Another feature is that no text-window exists in
the GTIA modes. Adding 16 to the mode number
after a GRAPHICS command does not change this.
Adding 32 does work, by not clearing the screen after
a mode change.

To see the new modes, enter and run the follow
ing program. (If your computer has only a CTIA chip,
this program will be very disappointing.)

PROGRAM 6

28

lB REM gtia mode demo
3B GRAPHICS B: POKE 752, 1: POSITION 2,7
4B ? "THIS IS A DEMONSTRATION OF MODES
9-1 1."
5B ? "TO GO FROM ONE DISPLAY TO THE
NEXT , "

60 ? "PRE SS THE start BUTTON AFTER EACH"
7e ? "DISPLAY IS DONE."
se ":> :? "TO SEE THE LUMINANCES Al)AI LABLE
IN"
90 ":> "MODE 9, PRESS star t . TO CHANGE"
109 ? "THE HUE BASE, PRESS start
AGAIN "
110 DEMO=0
120 IF PEEK(53279)=6 THEN 140
130 GOTO 12e
1413 DEMO=DEMO+ I
15e ON DEMO GOSUB le00, 2000, 3000,
41300, 50eO, 6e0e, 7aB0, S000, 9000, 170
160 GOTO 120
170 END
1000 REM mode 9 luminances
1010 GRAPHICS 9
1020 SETCOLOR 4,0,0
103e FOR H=0 TO 15
1040 COLOR H
1050 FOR P=0 TO 4
1060 PLOT 5)(H+P,0: DRAWTO 5)(H+P, 191
1079 NEXT P: NEXT H
1080 RETURN
2000 REM change mode 9 color base
2010 FOR C=1 TO 15
2020 SET COLOR 4,C,0
2030 FOR T=1 TO 300 : NEXT T
2040 NEXT C
2050 RETURN
3000 GRAPHICS 0: POKE 752,1: POSITION
1,12
3010 ? "THIS IS THE PI XEL SIZE FOR MODES
9 -11:": FOR T=1 TO 100: NEXT T
3020 RETURN
4009 REM gtia pi xe l size demo
4010 GRAPHICS 11: SETCO LOR 4,0,10
4020 FOR J=1 TO 100
4e3e X=INT (8B)(RND(0»):
Y=INT(192)(RND(9»): C=INT(15)(RND(0»)+1
40413 CO LOR C: PLOT X,Y
4050 NEXT J
4060 RETURN
4979 NEXT X
4080 NEXT Y
4999 RETURN
5909 GRAPHICS 0: POKE 752,1: POSITION
2,11
5010 ? "MODE 19 HAS THE SAME PI XEL SIZE,
BUT"
5029 ? "CAN SUPPORT UP TO 9 DIFFERENT
COLORS"
5030 ? "WITH INDEPENDENT HUES AND
LUMINANCES:": FOR T=1 TO 100: NEXT T
5040 RETURN
6009 REM mode 10 color demo
6910 GRAPHICS 10
6020 POKE 704,0: POKE 705,30: POKE
706,129: POKE 707,160
6030 SETCOLOR 0,4,4: SETC OLOR 1,3,12:
SETCOLOR 2,14,2: SET COLOR 3,5,12 :
SETCOLOR 4,1,2
6040 FOR C=1 TO 8
6050 COLOR C
6060 FOR X=O TO 4
6070 PLOT 10)(C- I) +X,0: DRAWTO
10)«C - 1)+X,191
6080 NEXT X
6090 NEXT C
6100 RETURN
7000 GRAPHICS 0: POKE 752,1: POSITION 2,9
7919 ? "MODE II HA S ONLY ONE LUMINANCE,
BUT"
7929
7030
7040
SEE"

"CAN SUPPORT 16 DIFFERENT HUES."
:? "PRESS start TO SEE THE HUES·
"AVAILA8LE, PRESS start AGA IN TO

29

7050 ? "THE BASE LUMINANCE
CHANGE ": FOR T=I TO 100: NEXT T
7060 RETURN
S000 REM mode II hues
S010 GRAPHICS II
s0i0 SETCOLOR 4,0,0
S030 FOR H=0 TO 15
8040 COLOR H
S050 FOR P=0 TO 4
S060 PLOT 5*H+P,0: DRAWTO 5*H+P, 191
S070 NEXT P: NEXT H
S0S0 RETURN
9000 REM change mode 11 luminance base
9010 FOR L=2 TO 14 STEP 2
9020 SETCOLOR 4,0,L
9030 FOR T=I TO 200: NEXT T
9040 NEXT L
9050 RETURN

Now that we have seen the new modes, let's
examine each one individually. We will start with
mode 10, since it most closely resembles the CTIA
graphics modes we worked with earlier.

MODE 10
The main difference between mode 10 and stan

dard graphics modes (aside from pixel size) is that
there are 9 color registers to work with instead of 4 or
2. There is one problem with this: we can only access
5 color registers using the SETCOLOR command.
Fortunately, there is an easy solution.

When we command the computer to SETCOLOR
r,h,l, it finds the color register location in its memory.
Then it multiplies the hue value by 16, adds the lumi
nance value, and stores this value in the appropriate
memory address. It has now changed the color regis
ter to the color for which we asked.

We can do this same operation ourselves. Instead
of commanding SETCOLOR 0,4,6, for example
(which puts red into register no. 0), we can POKE the
number directly into the color register. To do this we
must know the memory location of color register no.
0; it is memory address 708. Then we convert the hue
and luminance values into one number as the compu
ter did above: hue times 16 plus luminance-in this
case, (4 X 16) + 6, which equals 70. Now we poke this
value into 708: POKE 708,70. We have just changed
color register no. 0 without using the SETCOLOR
command.

To summarize the POKE method of changing
color registers:

1. Convert hue and luminance to an even num
ber from 0 to 254 using the formula
(h x 16) + l where h = hue and l = luminance.

2. POKE the resultant value into the memory
address of the color register you wish to
change. In mode 10 there are 9 registers, in
memory locations 704 through 712.

Now we can load the color registers that are not
accessible through the SETCOLOR command. These
are in memory locations 704 through 707. Memory
locations 708 through 712 correspond to SETCOLOR
numbers 0 through 4. You can set the colors here by
using the SETCOLOR command or by the POKE
method, whichever you find more convenient. (For an
example of register setting, see lines 6020 and 6030 in
Program 6.)

30

Plotting pixels on the screen works the same
way in mode 10 as in previous graphics modes, except
that the range of values we insert into the pixels is
greater. We insert values from 0 through 8, which
correspond to the color registers in memory
addresses 704 through 712. To do this, we can use the
COLOR, PLOT, and DRA WTO commands or we can
use the PRINT #6; method . The value 0 in a pixel calls
the background-color register, which is in memory
address 704. Values 1 through 8 call up the colors in
registers located in addresses 704 through 712.
Default colors are black in memory addresses
704-707 and 712, orange in 708, light green in 709,
dark blue in 710, and red in 711. The chart in Figure
13 should make this clearer.

Calls up register Which is
Color in memory SETCOLOR Loaded with

#: location #: register #: default color:

0 704 - black

1 705 - black

2 706 - black

3 707 - black

4 708 0 orange

5 709 1 light green

6 710 2 dark blue

7 711 3 red

8 712 4 black

FIGURE 13. Chart of mode 10 pixel value-color reg
ister equivalencies.

The advantages of this mode are clear. It is very
easy to create high-resolution graphics displays with
many colors. By rotating colors from register to reg
ister it is possible to achieve the illusion of motion on
the screen. You can see this by entering and running
Program 7.

PROGRAM 7

Ifl F:U1 Z i 9z".9
20 REM a mode 10 demo
5EI liRAPH I CS 113
60 FOR R= 784 TO 712: READ C: POKE R,C:
NC<T R
70 DATA O~ 148~ 182~216,3B~58,74,68~ 100
8£1 On'1 SSt; 16) : 1=-33
'7'tl FOR B= 1 TO ::::
108 S$="ABCDEFliHA8COEFGH": T=I: 1=1+32:
liOSUS 160
110 S$="HliFEOCSAHliFEDCBA": T=2: 1=1+32:
liOS UB 160
12101 I-I EXT E:
130 ><=PEEI< (7 12)
140 FO R R= 1 TO 8 : ·'(= F·EEK (7 04+R) : POKE
784+R, X : X=Y : NEXT R
150 liOTO 140
160 FOR Y=1 TO 16
170 PO S IT ION O,I+Y
188 FOR X=1 TO 10
190 ON T liOSUS 280,298
208 NEXT X : NEXT Y
218 FOR Y2=16 TO 1 STEP -1
220 POSITION 0 ,1+1 6+Y2
239 FOR X=1 TO 10

31

240 '(= 17-'(2
258 ON T GO S UB 288,296
260 NEXT X : NEXT Y2
278 F:ETURN
288 PRIt,JT

MODE 9
This mode has only one hue, but it is available in

16 different luminances, This gives us a capability of
delicate shading that is not possible in other modes,

Since there is only one hue used (called the base
hue), we need only use one color register, register no,
4, We choose the base hue we wish to use, a value
from ° through 15, and load it in register no, 4 using a
SETCOLOR command , We set the luminance to 0, If
we use a higher luminance value, we will be restricted
to fewer luminances when we plot pixels later on, For
example, to set our base hue to orange, we use the
command SETCOLOR 4,2,0 .

Plotting the pixels is easy , We load them with
values from ° through 15: the higher the value, the
higher the luminance of the displayed pixel. As
before"we can use the COLOR, PLOT, and DRA WTO
commands to do this or we can use the PRINT #6;
method. Since there are 16 different values to
present, useful characters in using the PRINT #6;
method are ° for luminance 0, and A through 0 (letter
0, not zero) for luminances 1 through 15.

The default color in mode 9 is black. This means
register no. 4 is set to 0,0.

The delicate shading available in mode 9 is par
ticularly useful for presenting three-dimensional
images . By entering and running Program 8, you can
see an example of this shading. (See Plate 2 on inside
front cover.)

PROGRAM 8

18 REM Si net.<.' a.v e
20 REM mod e 9 picture demo
48 GRAPHI CS .:;.
50 SETCOLOR 4,3,8
60 DEG
70 FOR X= 8 TO 79
80 COL OR ABSCINT (15*S IN (9* X»)
<"'1;:1 PLOT X ,20-(INT (19*S Ii'H 9*X»)
108 DRAWTO X, 160-C INT (19*5 IN (9*X»)
110 COLOR 5
128 PLOT X , 161 -CI NT (1<;'*S IN (9*X») :
DRAJ<JTO)(, 19 1
130 NEXT X
140 GOTO 140

MODE 11
Mode 11 is the reverse of mode 9: there is only

one luminance, with 16 hues. This allows us vivid
multicolored displays. As in mode 9, we use only one
color register, this time to set the base luminance. As
before, this is register no. 4. We choose the luminance
we wish to use, and insert the value (an even number
from ° to 14) into register no. 4. We set the hue value
to 0, for otherwise the number of colors available to
us while plotting pixels will be limited.

Plotting the pixels also works very much as it
does in mode 9. We load the pixels with values of °
through 15. The values in mode 11 correspond to the

32

16 hues we have been using (see Plate 4 on inside back
cover). Now we can see them all at once if we wish.
We can use the COLOR, PLOT, DRAWTO, and
PRINT #6; methods to load the pixels. One item to
note: a pixel value of 0, which is the background color
of black, is not affected by the base luminance. It is
always at luminance 0. This gives a good black border
and background no matter what base luminance we
are using. The default setting in mode 11 is luminance
6: this means that register no . 4 is set to 0,6.

Mode 11 is best used to present a rainbow spec
trum of colors on the screen at one time. Program 9,
the mode 11 demonstration program shown below,
demonstrates this capability. (See Plate 3 on inside
front cover.)

PROGRAM 9

113 F:EI' I Pop~, i c le

28 REM a mo de 11 demo
40 GRAPHICS 11
58 S ET COLOR 4, 0,18
60 FOR ,(=0 TO 5
78 COLOR 3 : READ X ,W: PLOT X ,Y: DRAWTO
I' I, Y'
813 NEXT ,,(
913 DATA

Ht8 X=24: 1'1= 55
liB FOR Y=6 TO 11
128 PLOT X , Y : DR~WTO N, Y
130 NEXT ''(
140 FOR A= 1 TO 9 : RE~D C
1513 FOR Y=A¥ 12-1 TO A1 12+ 11
1613 COLOR C: PLOT X , Y : ORAWTO N, Y
178 NEXT Y : NEXT A
1 8 £1 DA T A 4 ~ 5 ~ 6 ~ 7 , :3 , 9, 1 (1 , 1 2., 1 3
1913 FOR Y= 128 TO 133
208 PLOT X , Y : DRAWTO N, '(
210 NEXT Y
220 FOR Y=1 34 TO 135
230 READ X ,W: PLOT X , Y: DRAWTO W, Y
248 t·IE><T Y
250 DATA 2 5,54,26,53
268 FOR Y=1 36 TO 18 9
2 7 8 COLOR 2: PLOT 37,Y : DRAWTO 42,Y
288 NEXT '(
2913 PLOT 38,1913 : DRANTO 41 , 19 13
3130 PLOT 3<;', 19 1: P LOT 48,191
3113 GOTO :~: 10

The GTIA chip offers us a considerable advantage
in creating high-resolution displays in many different
colors and shades, and its features are easily used
with BASIC commands. It is definitely worthwhile to
learn and use the new GTIA modes whenever possible.

33

5. TIPS AND TRICKS

This last section is a small collection of odds and
ends to make graphics programming a little neater
and easier. This is by no means a comprehensive col
lection-it is just the tip of the iceberg. You will no
doubt collect many more as you program. It would be
a good idea to keep a record of them for easy
reference.

34

1. Making the graphics cursor invisible in mode
0: POKE 752,1 will turn the cursor off;
POKE 752,0 will turn it back on.

2. Clearing the screen while running a
program: a PRINT'command will clear the
screen. (To get this character, hit the ESC
key, then hit SHIFT and CLEAR simul
taneously.) To clear the graphics window in
modes 1 through 8, use PRINT #6;' .

3. Keeping the screen out of "attract" mode:
use POKE 77,0 at least once every 7 minutes
in your program. Your Atari will begin to
shift colors on the screen to protect it from
burnout if it detects no keyboard activity for
longer than approximately 9 minutes. This
can be annoying if you are using joysticks or
if the computer is drawing designs slowly
without user input. POKE 77,0 resets the
attract mode timer to O.

4. Freezing a graphics display: hit the 1 key
while holding down the CONTROL key.
Doing this again will unfreeze the display and
allow it to continue. This is especially handy
when a long program is scrolling past you in
mode O. You can stop and start it at any time
without hitting BREAK and starting over
again. CONTROL 1 only interrupts the
graphics display and will not stop non-display
commands in process.

5. Setting the margins in mode 0: POKEing 82
will set the left margin; POKEing 83 will set
the right margin. The number you POKE
into locations 82 and 83 should be the number
of the column at which you want the margin.
POKE 82,0 sets the left margin at the left
edge of the screen. POKE 83,39 sets the
right margin at the right edge of the screen.

6. Using graphics characters: If you press down
the CONTROL key while typing letters of
the alphabet, you will notice strange charac
ters appearing on the screen. These are
graphics characters and can be used to create
pictures and charts in mode O. There are
blocks, half-blocks, diagonal lines, horizontal
lines, and many other shapes which combine
easily into recognizable images. There are
also card suite symbols (clubs, hearts,
spades, and diamonds), which make it easy to
display card games. To type in graphics
characters with ease, press the caps/lower
key while holding down the CONTROL key.

This will lock the keyboard into the CON
TROL mode. Pressing the caps/lower key
while holding the SHIFT key will return your
keyboard to the capital letter mode.

Just for fun: Enter the command POKE 755,4.
Don't ask why, just try it! To get back to normal,
enter the command POKE 755,2.

We have now finished our tour of video graphics
using Atari BASIC. Although we have a wide range
of video display effects available with what we have
learned, we have just scratched the surface of the
Atari graphics capabilities. Many advanced graphics
techniques are available to a programmer with a good
knowledge of the internal memory structure of the
Atari computer and some assembly language. You
must have seen many of them in the commercial pro
grams available for the Atari. Player/missile graphics
allow you to place an object on the screen that will
move in response to joystick controls. Display list
modification allows you to mix graphics modes on one
screen. (This lets you use mode 1 and 2 characters as
titles for graphics displays.) Designing your own
character sets allows you to create your own graphics
symbols. With artifact coloring you can get shades of
colors not usually available on the Atari and put many
more colors on the screen than your particular
graphics mode usually allows. Fine scrolling allows
you to scroll characters on the screen up, down, or
sideways in smooth motion. Using display list inter
rupts, you can expand the power of all of the previous
graphics techniques.

Although these graphics techniques require a
more sophisticated knowledge of the Atari than the
techniques we have learned in BASIC, they give you
something to look forward to. By learning more and
more about your computer, you gain increased
facility and finesse for creating excellent video
graphics.

We hope that this Handy Guide has provided
you with the fundamental tools of graphics program
ming and a comprehensive concept of the Atari
BASIC graphics system, so that you can now proceed
with your own programming. It is up to you to apply
imagination and structure to these tools in order to
communicate effectively through video graphics.
Good luck!

35

APPENDIX A: DISPLAY
MODE INFORMATION

The following two charts are presented to help
you keep track of color registers, pixel size, pixel load
numbers, and other miscellaneous information that
changes from mode to mode. The first chart deals
with the text modes 0 through 2; the second chart
presents the graphics modes 3 through 11.

TEXT MODES

36

1. "Number of columns" tells how many pixels
there are horizontally across the graphics
window.

2. "Number of rows" tells how many pixels
there are vertically down the graphics
window. The upper number is valid when a
text window is present; the lower number is
valid with no text window. (The text window
is always in mode 0, with 40 columns and 4
rows.)

3. "Number of colors" tells us the maximum
number of colors available in a particular
mode.

4. "Default colors" shows us the colors auto
matically loaded into the color registers
when the computer is turned on or SYSTEM
RESET is hit. Each one is followed by its hue
and luminance number as it would be entered
after a SETCOLOR command.

5. "In color register #" shows where each of the
default colors is loaded.

6. "Accessed in 'PRINT' by ATASCII charac
ters" tells us what characters will access
each color register. The numbers refer to the
ATASCII code (in decimal) for each charac
ter. This is basically for modes 1 and 2. Color
selection was discussed in the PRINT com
mand section. Note that the background and
border colors are not accessed by characters.

7. "RAM required (in bytes)" tells us how much
memory will be needed to support a particu
lar display mode. When the Atari enters the
mode, it must take up this much memory to
keep track of individual pixels. This informa
tion can be handy when writing a long pro
gram so that you can plan on less available
memory when your program calls up a mode
of higher resolution or more colors. Notice
that two-color modes use much less memory
than their four-color equivalents.

w

~

C
H

A
R

T
 1

.
T

ex
t

M
od

es

N
um

be
r

o
f

ro
w

s,

w
 t

ex
t

w
in

do
w

l
N

um
be

r
o

f
w

/o
 t

ex
t

M
od

e
co

lu
m

ns

w
in

do
w

0
40

24

 X

1
20

24
 /.

2
20

12

N
um

be
r

o
f

co
lo

rs

2,
 b

ot
h

of
 t

he

sa
m

e
hu

e

5 5

_
..

_
--

-
-
-

In
 c

ol
or

R

A
M

D

ef
au

lt
 c

ol
or

s
re

g
is

te
r

re
q

u
ir

ed

(h
ue

 a
nd

 l
um

in
an

ce
)

A

cc
es

se
d

in
 P

R
IN

T
 b

y
A

T
 A

S
C

II
 c

h
ar

ac
te

rs

(i
n

by
te

s)

lig
h

t
bl

ue
 (

9.
10

)
1

(I
um

.
on

ly
)

o
th

ro
ug

h
25

5
(a

ll
ch

ar
ac

te
rs

)
da

rk
 b

lu
e

(9
,4

)
2

ba
ck

gr
ou

nd
 (

no
 c

ha
ra

ct
er

s)

99
3

bl
ac

k
(0

,0
)

4
bo

rd
er

 (
no

 c
ha

ra
ct

er
s)

or
an

ge
 (

2,
8)

0

32
-9

5
(u

pp
er

ca
se

 l
et

te
rs

 a
nd

 n
um

er
al

s)

li
gh

t
gr

ee
n

(1
2,

10
)

1
0-

31
 a

nd
 9

6-
12

7
(l

ow
er

ca
se

 l
et

te
rs

 a
nd

 g
ra

ph
ic

s
ch

ar
ac

te
rs

)
da

rk
 b

lu
e

(9
,4

)
2

16
0-

23
3

(i
nv

er
se

 u
pp

er
ca

se
 l

et
te

rs
 a

nd
 n

um
er

al
s)

51

3
re

d
(4

,6
)

3
12

8-
15

9
an

d
22

4
-2

55
 (

in
ve

rs
e

lo
w

er
ca

se
 l

et
te

rs
 a

nd
 g

ra
ph

ic
s

ch
ar

ac
te

rs
)

bl
ac

k
(0

,0
)

4
ba

ck
gr

ou
nd

 a
nd

 b
or

de
r

(n
o

ch
ar

ac
te

rs
)

or
an

ge
 (

2,
8)

0

32
-9

5
(u

pp
er

ca
se

 l
et

te
rs

 a
nd

 n
um

er
al

s)

lig
ht

 g
re

en
 (

12
,1

0)

1
0-

31
 a

nd
 9

6
-1

27
 (

lo
w

er
ca

se
 l

et
te

rs
 a

nd
 g

ra
ph

ic
s

ch
ar

ac
te

rs
)

da
rk

 b
lu

e
(9

,4
)

2
16

0-
23

3
(i

nv
er

se
 u

pp
er

ca
se

 l
et

te
rs

 a
nd

 n
um

er
al

s)

26
]

re
d

(4
,6

)
3

12
8-

15
9

an
d

22
4

-2
55

 (
in

ve
rs

e
lo

w
er

ca
se

 l
et

te
rs

 a
nd

 g
ra

ph
ic

s
ch

ar
ac

te
rs

)
bl

ac
k

(0
,0

)
4

ba
ck

gr
ou

nd
 a

nd
 b

or
de

r
(n

o
ch

ar
ac

te
rs

)

GRAPHICS MODES

1. The number of columns, rows, and colors and
the default colors mean the same in this chart
as they do in the text-mode chart. However,
for mode 11 there is no default color, just a
defaul t luminance.

2. "In color regi ster #" is the same as in the
text-mode chart, with the exception of mode
10. Here the registers are represented by
their memory addresses (in parentheses),
which follow their register number (if one
exists) .

3. "Accessed by pixel load (COLOR)#" shows
what number in a pixel will access the color
register of the previous column. This is the
number we use in a "COLOR" command.

4. "Background color register #" and "border
color register #" show which registers con
trol the background and border.

5. "RAM required" is the same as in the text
mode chart.

A word of explanation is needed for modes 0 and
8. Only the luminance differs: the hue for the back
ground and the characters or graphics points is
always the same; the background is controlled by reg
ister no. 2, and the characters or graphics points are
controlled by register no. 1. This is true for the text
window, too, so care must be taken to have a wide
luminance difference between registers 1 and 2 when
you reload registers for use in the graphics window.

38

C
H

A
R

T
 2

.
G

ra
ph

ic
s

M
od

es

N
um

b
er

of

 r
ow

s,

w
 t

ex
t

w
in

do
w

!
In

 c
ol

or

A
cc

es
se

d
by

N

um
be

r
o

f
w

lo
 t

ex
t

N
um

be
r

D
ef

au
lt

 c
ol

o
rs

re

gi
st

er

pi
xe

l
lo

ad

B
ac

k
gr

o
un

d
co

lo
r

B
or

de
r

co
lo

r
R

A
M

 r
eq

u
ir

ed

M
o

de

co
lu

m
ns

w

in
do

,v

o
f

co
lo

rs

(h
u

e
a

nd
 l

um
in

an
ce

)

(C
O

L
O

R
 #

)
re

g
is

te
r

re

g
is

te
r

(i

n
by

te
s)

or
an

ge
 (

2,
8)

0

1

V
.

lig
h

t
gr

ee
n

(1
2

,1
0)

1

2
3

40

4
da

rk
 b

lu
e

(9
,4

)
2

3
4

4
27

3
24

bl

ac
k

(0
,0

)
4

o (
ba

ck
gr

ou
nd

 a
nd

 b
or

d
er

)

80

~

2
or

an
ge

 (
2,

8)

0
1

4
4

53
7

4
48

bl

ac
k

(0
,0

)
4

o (
ba

ck
gr

ou
nd

 a
nd

 b
or

de
r)

or
an

ge
 (

2
,8

)
0

1

IV
.

li
gh

t
gr

ee
n

(1
2

,1
0)

1

2
4

4
10

17

5
80

4

da
rk

 b
lu

e
(9

,4
)

2
3

48

bl
ac

k
(0

,0
)

4
o (

ba
ck

gr
ou

nd
 a

nd
 b

or
de

r)

6
16

0
~

2
or

an
ge

 (2
,8

)
0

1
4

4
20

25

96

bl
ac

k
(0

,0
)

4
o (

ba
ck

gr
ou

nd
 a

nd
 b

or
de

r)

o
ra

ng
e

(2
,8

)
0

1

V
.

li
gh

t
gr

ee
n

(1
2

,1
0)

1

2
4

4
39

45

7
16

0
4

da
rk

 b
lu

e
(9

,4
)

2
3

96

bl
ac

k
(0

,0
)

4
o (

ba
ck

gr
ou

nd
 a

nd
 b

or
de

r)

~

(C
o

n
/i

n
n

e
d

 o
n

n
e

xl
 p

ag
e)

f\

A
 o

C
H

A
R

T
 2

.:

G
ra

p
hi

cs
 M

od
es

 (
co

nt
in

ue
d)

N
um

be
r

of
 r

ow
s,

w

 t
ex

t
w

in
do

w
l

N
um

b
er

 o
f

w
lo

 t
ex

t
N

um
b

er

M
o

de

co
lu

m
n

s
w

in
d

ow

o
f

co
lo

rs

X

2,
 b

ot
h

8
32

0
of

 t
he

19

2
sa

m
e

hu
e

9
80

19

2
I

hu
e,

16

 l
um

in
an

ce
s

10

80

19
2

"
/

~,

9

11

80

19
2

16
 h

u
es

,
1

lu
m

in
an

ce

D
ef

au
lt

 c
ol

or
s

(h
u

e
an

d
lu

m
in

an
ce

)

li
gh

t
bl

ue
 (

9
,1

0)

da
rk

 b
lu

e
(9

,4
)

bl
ac

k
(0

,0
)

bl
ac

k
(0

,0
)

bl
ac

k
(0

,0
)

bl
ac

k
(0

,0
);

bl
ac

k
(0

,0
)

bl
ac

k
(0

,0
);

 o
ra

ng
e

(2
,8

)
lig

h
t

g
re

en
 (

12
,1

0)
;

da
rk

 b
lu

e
(9

,4
)

re
d

(4
,6

);
bl

ac
k

(0
,0

)

lu
m

in
an

ce
 (

0
,6

)

In
 c

ol
o

r
A

cc
es

se
d

by

re
g

is
te

r
tx

e
ll

o
a
d

B

ac
kg

ro
un

d
co

lo
r

B
o

rd
er

 c
ol

or

R
A

M
 r

eq
u

ir
ed

..

(
O

L
O

R
 #

):
re

g
is

te
r

#:

re
gi

st
er

 #
:

(i
n

by
te

s)

".

I
(l

um
.

on
ly

)
1

4
79

00

2
2

2

4
bo

rd
er

 (
no

 p
ix

el
s)

4
nu

m
be

rs
 0

-1
5

gi
ve

 1
6

4
4

79
00

sh

ad
es

 o
f

lu
m

in
an

ce

(7
04

)
o (

ba
ck

gr
ou

nd
 a

nd
 b

or
de

r)

(7
05

);
 (

70
6)

1;

 2

(7
07

);
 0

 (
70

8)

3;
 4

(7

04
)

(7
04

)
79

00

1
(7

09
)

5
2

(7
10

)
6

3
(7

11
);

 4
 (

7
12

)
7;

 8

4
nu

m
be

rs
 0

-1
5

gi
ve

 1
6

al
w

ay
s

bl
ac

k
al

w
ay

s
bl

ac
k

79
00

di

ff
er

en
t

hu
es

-
-
-

-
-
-

APPENDIX B: ATASCII CODE
CHART

Modes 1 and 2
Keystrokes Mode 0 Character

Decimal to Produce ATASCII Color
Code Character Character Register

0 CTRA- , C Space
1

1 CTRL-A "
!

1

II) " 2 CTRL-B
1

3 CTRL-C g #
1

4 CTRL-D a $
1

5 CTRL-E ~ 'l'h
1

6 CTRL-F ~
&

1

~
,

7 CTRL-G
1

8 CTRL-H ~
(

1

9 CTRL-I rI)
1

~
.

10 CTRL-J
1

11 CTRL-K ~
+

1

iii
,

12 CTRL-L
1

13 CTRL-M ~ 1

14 CTRL-N ~ 1

15 CTRL-O eI I
1

16 CTRL-P C 0
1

17 CTRL-Q ~
1

1

18 CTRL-R = 2
1

19 CTRL-S 0 3
1

20 CTRL-T C 4
1

21 CTRL-U ~
5

1

22 CTRL-V III 6
1

23 CTRL-W ~
7

1

24 CTRL-X ~
8

1

25 CTRL-Y [J 9
1

26 CTRL-Z ~ 1

27 ESC\ESC ~
;

1

ESC\CTRL-- 0 < 28 1

29 ESC\CTRL-= 0 =
1

41

~ Keystrokes Mode 0 Character
Decimal to Produce ATASCII Color

Code Character Character Register

CI >
30 ESC\CTRL-+ 1

31 ESC\CTRL-* = ?
1

32 SPACE BAR Space
Space

0

33 SHIFT-l ! !
0

"
34 SH 1FT-2 " 0

35 SHIFT-3 #
II

0

36 SHlFT-4 $ $
0

37 SHlFT-5 0/0
(Vo

0

38 SHIFT-6 &
&,

0 ,
39 SHIFT-7

,
0

40 SHIFT-!-J (
(

0

41 SHIFT-O)
)

0 .
42 * .

0

43 + + +
0

,
44 , ,

0

45
0

46
0

47 / /
/

0

48 0 0
0

0

49 1 I
1

0

50 2 2
2

0

51 3 3
3

0

52 4 4
4

0

53 5 5 5
0

54 6 6 6
0

55 7 7
7

0

56 8 8
8

0

57 !-J 9 9
0

58 S HIP'!' :
0

59 , , ,
0

60 < < <
0

-
61 ; ;

0

42

~ Keystrokes Mode 0 Character
Decimal to Produce ATASCII Color

Code Character Character Register

62 > > >
0

63 SHIFT-\ ?
?

0

64 SHIFT-8 @
@

0

65 A A
A

0

66 B B
B

0

67 C C
C

0

68 D D
D

0

69 E E
E

0

70 F F'
F

0

71 G G
G

0

72 H H
H

0

73 I I- I
0

74 J J
J

0

75 K K
K

0

76 L L
L

0

77 M M
M

0

78 N N
N

0

79 0 0
0

0

80 P P
P

0

81 Q Q Q
0

82 R R
R

0

83 S S
S

0

84 T T
T

0

85 U U
U

0

86 V V
V

0

87 W W
W

0

88 X X
X

0

89 Y Y
Y

0

90 Z Z
Z

0

91 SHIFT-; l l
0

92 SHIFT-,
\

\
0

93 SHIFT-+ J 1
0

94 SHIFT-- A A
0

43

~ Keystrokes Mode 0 Character
Decimal to Produce ATASCII Color

Code Character Character Register

-
95 SHIFT- -

0

96 CTRL-. C @

1

97
A

a a 1

98 b b
B

1

99 C
c c 1

100 d d
D

1

101 E
e e 1

102 f f
F

1

103 G
g g 1

104 h h
H

1

105 i i
I

1

106 j .i
J

1

107 k k
K

1

108 I I L
1

109 M
III In

1

110 N
n n

1

111 0
0 0

1

112 P
P P 1

113 q q Q
1

114 R
r r

1

115 S s s
1

116 t t T
1

117 U
u u

1

118 V
v v

1

119 W
w w

1

120 X x x
1

121 Y
Y Y 1

122 Z
z z

1

123 CTRL-; D [
1

124 SHIFT = I "- I

ESC\CTRL-< [J 125 01' CLEAR SCREEN
ESC\SHIFT-<

126 ESC\BACK S [] /\
1

127 ESC\TAB Il -
1

128 (A) CTRL- , I!I Space
;)

44

~ Keystrokes Mode 0 Character
Decimal to Produce ATASCII Color

Code Character Character Register

129 C,t,) CTRL-A (} !
3

~
" 130 (."'-) CTRL-B

3

131 C"'-) CTRL-C f.i #
3

132 (-"') CTRL-D [:t $
3

133 (-"') CTRL-E n 0/0
3

134 (-"') CTRL-F [Z &
3

~G
,

135 (-"') CTRL-G
~

136 (-"') CTRL-H l4 (
3

137 (-"') CTRL-I ~
)

3

138 (."'-) CTRL-J ~
*

~

139 (."'-) CTRL-K r, .' +
~ 3

140 (A-) CTRL- L '. "
, - ~

141 (-"') CTRL-M I-
~ 3

142 (-"') CTRL-N r" = 3

143 (-"') CTRL-O [! I

~

144 (-"') CTRL-P l!. 0
3

(-"') CTRL-Q ~ 1 145
3

146 (-"') CTRL-R ~ 2
3

(-"') CTRL-S [i 3
147

3

(-"') CTRL-T ~'.
4

148 3 -(-"') CTRL-U r~ 5
149 3

(-"') CT RL- V L 6
150 3

(-"') CTRL-W ~ 7
151 cr. 3

152 (-"') CTRL-X ~ 8
3

(-"') CTRL- Y :r 9
153

~

154 (-"') CTRL-Z ~ 3

155 (-"') RETURN
I LULl BLANK COLUMN cmm

ESC\SHIFT- [IJ < 156
BACK S 3

157 ESC\SH l'-> [!] =

3

ESC\CTRL- [B > 158
TAli ~

ESC\SHIFT- ffi '!
159

TAB 3

160
I ~~ACB MIl

Space

2

45

Keystrokes Mode 0
Decimal to Produce ATASCII Color

Code Character Character Register

161 (A..) SHIFT-1 2

162 (.....) SHIFT-2 2

163 (.....) SHIFT-3 2

164 (A..) SHIFT-4

165 (.....) SHIFT-5 2

166 (.....) SHIFT-6 2

167 (.....) SHIFT-7 2

168 (.....) SHIFT-9

169 (.....) SHIFT-O 2

170 (.....) *

171 (.....) + +

172 (.....) , 2

173 (.....) - 2

174 (.....) .
2

175 (.....) /

176 (.....) 0
2

177 (.....)1 2

178 (.....) 2
2

2

179 (.....) 3 3
2

180 (.....) 4
4

2

181 (.....) 5 5
2

182 (.....) 6 6
2

183 (.....) 7
7

184 (.....) 8
2

185 (.....) 9 9
2

186 (.....) SHIFT-:

187 (.....) ;
2

188 (.....)< <

189 (.....) =
2

190 (..... » >
2

191 (.....) SHIF'T-/
2

192 (.....) SHIFT-8

193 (.....) A
2

46

Keystrol~es Mode 0
Decimal to Produce ATASCII Color

Code Character Register

194 (."-.) B 2

195 (."-.) C

196 (."-.) D

197 (."-.) E

198 (."-.) F

199 (."-.)G

200 C) H

201 (.~) I 2

202 (."-.) J
J

2

203 (."-..)K
K

204 (."-.)L
L

2

205 (."-.)M
M

2

206 (."-.) N
N

207 (."-..)0

208 (."-.) P

209 (."-.)Q

210 (."-.) R

211 (."-.) S

212 (."-.)'1'

213 (."-.) U

214 (."-.) V 2

215 (."-.)W

216 (."-.) X 2

217 (."-.) Y 2

218 (."-.)Z
Z

2

219 (."-.) SHIFT-, 2

220 (."-.) SI-IIFT-+
\

221 (."-.) SI-IU''J'- . 2

222 (."-.) SH IF"J'-* II

223 (."-.) Sl-I IFT- 2

224 (."-..) CTRL-.
@

225 (."-.) a 3

226 (."-.) b
B

47

Keystrokes Mode 0
Decimal to Produce ATASCII Color

Code Character Register

227 (.....) c
C

228 (.....) d
D

229 (.....) e

230 (.....) f

231 (.....)g

232 (.....) h

233 (~) i 3

234 (.....).i J
3

235 (.....) k
K

236 (.....) I
L

3

237 (.....) 111
M

3

238 (A) n
N

3

239 (A) 0

240 (A) P

241 (A) q

242 (A) r
3

243 (A) S

244 (A) t T

245 (A)u U
3

246 (A) v
V

247 (A) W

248 (A) x

249 (A) Y

250 (A) Z

251 (A) CTRL-;

252 (A) SHIFT- =
3

253

(AlESC 1\

254 CTRL-BACK
S

255 (A)

ESC\CTR 3

48

G
ra

y
I M

ed
iu

m
 B

lu
e

8

L
ig

ht
 O

ra
n

g
e

(G
ol

d)

I L
ig

h
t B

lu
e

9

O
ra

n
g

e
I T

u
rq

u
o

is
e

10

I G
re

en
-B

lu
e

11

I G
re

en

12

L
av

en
de

r
I Y

el
lo

w
-G

re
en

13

B
lu

e-
P

ur
p

le

I O
ra

n
g

e
-G

re
en

14

Pu
rp

le
-B

lu
e

I Li
gh

t O
ra

n
g

e
15

P
L

A
T

E
 4

C

ha
rt

 o
f

av
ai

la
bl

e
hu

es
 u

si
ng

 A
ta

ri
 S

E
T

C
O

L
O

R
 c

om
m

an
d.

	Cover
	Contents
	Introduction
	Basic Concepts
	Graphics Commands
	The GTIA Chip and Graphics Modes 9, 10, and 11
	Tips and Tricks
	Appendix
	Display Mode Information
	ATASCII Code Chart
	Color Chart

